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INTRODUCTION 

The simplest, most convenient method for the determina­

tion of the organic hydroxyl group is probably acetylatlon. 

In addition, it is a general method for the determination of 

amino groups and mereapto groups although in the majority of 

cases, phenols, amines, and mercaptans are more conveniently 

titrated in nonaqueous media. 

The hydroxy1 containing sample is usually heated with an 

excess of acetic anhydride, water is then commonly added to 

quench the reaction, and the resulting acetic acid is ti­

trated with standard alcoholic sodium hydroxide: 

(CH3C0)20 + ROH $ CHgCOOR + CHgCOOH (1) 

(CH5C0)20 + HgO ) 2 CHgCOOH (2) 

A blank containing exactly the same amount of acetic anhy­

dride but no hydroxyl sample is treated similarly, and the 

difference between the titrations is equivalent to the amount 

of hydroxy1 group present. 
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THE LITERATURE 

Analytical Acetylatlons of Alcohols 

The development of the acetylation method has centered 

around the use of acetic anhydride and has been reviewed by 

Mehlenbacher (23). Benedict and Ulzer (3) first acetylated 

samples of hydroxyl containing fatty acids by heating with 

acetic anhydride alone. Anô.ré (l) modified the analysis by 

saponifying the sample before and after acetylation to de­

termine the amount of acetate ester formed. 

Verley and Bolsing (36) were the first to use pyridine 

as a solvent with a 12% solution of acetic anhydride. They 

also hydrolyzed the acetic anhydride to acetic acid and ti­

trated it with sodium hydroxide. Later investigators re­

tained the pyridine-acetic anhydride reagent and introduced 

modications such as use of n-butanol as homogenizer by West, 

Hoaglund, and Curtis (37). Ogg, Porter, and Willits (27) 

used a reagent concentration of 3 parts pyridine to 1 part of 

acetic anhydride in combination with n-butanol as homogen­

izer. These 30 to 60 minute macro and semimicro procedures 

are used by both Fritz and Hammond (12) and Siggia (30). 

In fact, the use of pyridine has been so widely accepted 

that Guenther, Kulka, and Rogers (18) in a review objected to 

its omission in the acetylation method of Kepner and Webb 

(20) .  

In view of the above established procedures, it is not 
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difficult to understand that acetylation with acetyl chlo­

ride and acid-catalyzed acetylation, both more rapid methods, 

have been neglected. For instance, Smith and Bryant (32) 

analyzed more than 30 alcohols and phenols by heating with 

acetyl chloride in pyridine and toluene at 60° for only 20 

minutes. 

Analytical Acetylatlons of Phenols and Amines 

In addition to the foregoing method for phenols, Siggia 

(30) has applied the Ogg, Porter, and Willits (27) method to 

the determination of phenols and monosubstituted phenols and 

has observed that 2,4,6-trisubstituted phenols react only 

very slightly with acetic anhydride in pyridine. Petersen, 

Hedberg, and Chrlstensen (29) have determined resorcinol and 

nltrophenols on a micro scale at room temperature with 24 

hour reaction periods. In any method for phenols, any un-

reacted, fairly acidic phenol is titrated as acetic acid by 

sodium hydroxide and hence causes a greater error in the de­

termination. 

The same acetylation procedures for alcohols and phenols 

are applicable to the determination of amines. However, the 

limitations are numerous. For instance Wild (38) has stated 

that dlbutylamine, diarylamines, carbazole, pyrrole, and 

phenothiazine cannot be determined by acetylation. In addi­

tion, some amines or amides, such as 2,4,6-tribromoaniline 
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and p-nitroacetanilide, are very insoluble. 

Siggia (30) has successfully applied the Ogg, Porter, 

and Willits (27) method to arylamines, monosubstituted 

arylamines, aliphatic amines, and aliphatic diamines. The 

Mitchell, Hawkins, and Smith (25) scheme of analyzing for 

water consumed in the hydrolysis of acetic anhydride by the 

Karl Fischer method is also applicable to the above amines. 

The quantitative acetylation of deactivated anilines, 

such as the nitroanilines, has not been reported either. In 

particular, Hall (19) found o- and p-nitroanilines too weakly 

basic to titrate in nonaqueous solvents, and Fritz, Moye, 

and Richard (15) found them too weakly acidic to titrate in 

nonaqueous media. Although their quantitative acetylatlons 

are not in the literature, some kinexiic rate data is avail­

able on the acylation of m- and p-nitroanilines. Litvinenko 

and G-rekov (22) found the rate constants at 25° for the 

acetyl chloride acetylation of aniline and p-nltroaniline to 

be 1.16 and 0.00149, respectively; Kretov and Kulchitskaya 

(21) found the rate constants at 30° for maleic anhydride 

acylation of aniline and m-nitroaniline to be 2.9 and 0.023. 

The para isomer is about an order of magnitude less reactive 

than the meta isomer. 

Acid-Catalyzed Acetylatlons 

Acid-catalyzed acetylation on a preparative organic 

scale is not new. Fieser (9) gives directions for 
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acetylation of salicylic acid in pure acetic anhydride with 

2 drops of sulfuric acid. 

Conant and Bramann (6) studied the acid and base-cata­

lyzed acetylation of b-naphthol in 0.88K acetic anhydride 

in glacial acetic acid and found that 0.21-Ï perchloric acid 

catalyzed the reaction at an immeasurably fast rate. Using 

3M pyridine as a standard, 0.2M sulfuric acid catalyzed the 

reaction 20 times as fast and 0.2 H p-toluenesulfonic acid 

3 times as rapidly. 

Acid-catalyzed acetylation has been employed by Toennies 

and Kolb (35). They used a 0.2 to 0.25 M solution of per­

chloric acid and of acetic anhydride in glacial acetic acid 

to acetylate hydroxyl groups in amino acids. The reaction 

required 2 hours at room temperature. A 3 hour reaction of 

anthranilic acid v:as needed to determine the excess anhydride. 

Pesez (28) used a 0.17M solution of p-toluenesulfonic 

acid and 1.3M proprionic anhydride in glacial acetic acid for 

acid-catalyzed acylations for 2 hours at room temperature or 

30 minutes at 100°. In an investigation of the proper con­

centration and ratio of acid to anhydride, Erdos and Bogati 

(8) found that a mole ratio of .001 to .01 chlorosulfonic 

acid to acetic anhydride was the optimum, and that 3 moles 

of acetic anhydride to 1 mole of alcohol was the proper ratio 

for rapid reaction. However, even at reflux, n-butanol re­

quired 6 hours for complete reaction. 

Very recently, Mesnard and Bertucat (24) utilized 
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phosphoric acid-catalyzed acetylation at room temperature 

with a reagent consisting of 15 drops of 80$ phosphoric acid, 

10 ml. of acetic anhydride, and 20 ml. of dioxane. However, 

the acetylatlons were slow, methanol requiring 3 hours for 

quantitative reaction and ethanol 6 hours. Tertiary alcohols 

could be quantitatively acetylated in 24 hours. Phenols 

apparently could not be quantitatively acetylated at room tem-

perature. 

Physical organic studies have established that per­

chloric as well as sulfuric acid forms a very reactive 

acetylium ion, which is then capable of acetylating any hy­

droxy! group very rapidly. Gillespie (15) has demonstrated 

the presence of the acetylium ion by cryoscopic measurements 

of acetic anhydride in excess sulfuric acid. Burton and 

Praill (4) have established that perchloric acid is more ef­

fective than sulfuric in the formation of the acetylium ion. 

They have postulated the formation of an oxonium salt between 

aryl ethers and acetylium ions, and have carried out room 

temperature acetylatlons of anisole, using perchloric acid 

and acetic anhydride in glacial acetic acid (5). 

The Burton-Praill (4) mechanism involves the formation 

of a reactive acetylium ion intermediate in equilibrium with 

acetic anhydride : 

Ac20 + H+ ^ Ac gOH+ ^ ^ Ac+ + HO Ac 

Ac+ + ROH ) ROAc + H+ 

(3)  

(4) 
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The equilibrium is shifted to the right by the reaction of 

any electrophile such as an alcohol with the acetylium ion. 

A proton is regenerated in reaction 4 and can rapidly re­

establish the equilibrium. As long as the solvent is not 

basic and is dry, the acetylation proceeds at a rapid rate. 

Barltrop and Morgan (2) have utilized this same per­

chloric acid catalysis in titrating water or primary alco­

hols in 0.06 to 0.1N perchloric acid with acetic anhydride 

in acetic acid as titrant, using an external ferric hydrox-

amate indicator. The titrimetrlc reaction was slow when 

water concentrations were above 20$, when ethers were used 

instead of acetic acid, or when the acid concentration fell 

to 0.Q4N. Chloroform and ethylene chloride inhibited the 

indicator color. Water could also be estimated in aniline, 

apparently because it formed the anilinium ion and acetyla­

tion was thus retarded. 

Base-Catalyzed Acetylatlons 

Gold and Jefferson (17) have proposed a mechanism for 

pyridine-catalyzed hydrolysis of acetic anhydride: 

C5H5N + Ar.oO V C5H5NAc+, OAc" (5) 

C5H5NAc+ + HgO ) C5H5NH+ + HOAc (6) 

Reaction 5 was rate determining with the hydrolysis of the 

pyridine-acetylium ion being rapid in reaction 6. Pyridine, 
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3-methyIpyridine, and 4-methylpyridine all catalyzed the hy­

drolysis rapidly and followed the Bronsted catalysis law, 

Sterlc hindrance with 2-methylpyridine or 2,ô-dimethyIpyridine 

inhibit the catalytic effect, and the Bronsted catalysis law 

is not obeyed. 
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EXPERIMENTAL 

Development of the Method 

Preliminary observations 

Qualitative observations demonstrated that a rapid 

acetylation was taking place by mixing perchloric acid with 

pyridine, acetic anhydride and an alcohol. 

This observation was tested by varying the concentra­

tion of perchloric acid in an acetic anhydride-pyridine rea­

gent and holding all other conditions constant. The results 

are shown in Table 1 in the succeeding section. They defi­

nitely show that the acetylation is quantitative at room tem­

perature and that heat was not needed to push the reaction to 

completion. This data prompted a wide investigation of the 

most favorable conditions for this acid catalysis. 

Concentration of the anhydride 

The limits for the concentration of anhydride are fixed 

by keeping the 0.55N NaOH titration of the hydrolyzed blank 

within 50 ml. and by using a low enough concentration of an­

hydride to permit use of a 5 ml. pipet. This is the concen­

tration described by Fritz and Hammond (12); that is, 3 parts 

ethyl acetate or pyridine solvent to 1 part acetic anhydride, 

or about 2M acetic anhydride. 

Concentration of perchloric acid 

Table 1 contains data on the effect of increasing the 
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Table 1. Effect of molarity of HCIO4 on 10" acetylatlons 
of 2-ethylhexanol in 25:25 pyridine : acetic an­
hydride 

M HCIO4 ;à Reaction 

0 81 
0.025 84 
0,05 88.4 
0.10 98.5 
0.15 99.8 

concentration of perchloric acid in 1:1 pyridine-acetic 

anhydride on 10 minute acetylatlons of 2-ethylhexanol. 

In 3:1 ethyl acetate : acetic anhydride, the concentra­

tion of 0.15M perchloric acid is retained. If this concen­

tration is doubled to 0.30M, erratic results of from 96.5 to 

98.?$ are obtained for 2-ethylhexanol. Calculations based 

on 5 ml. of this 0.30M reagent indicate that the water added 

with the perchloric acid reduces the amount of acetic an­

hydride available to react with 4 mmoles of alcohol from 12.5 

to 9.5 mmoles. Even though 0.30M is an unsatisfactory con­

centration, the ratio of acid to anhydride in the 0.15M 

perchloric acid reagent is twice the ratio in the 1:1 rea­

gent mentioned in Table 1. This ratio determines the concen­

tration of the reactive acetylium ion in reactions 3 and 4. 

Choice of solvent 

Ethyl acetate is the solvent of choice because of the 

stability of acetic anhydride in it, its availability in pure 
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form, and the minimum color of the reagent. The titration of 

acetic acid after hydrolysis gives essentially constant values 

over a period of 2 weeks, and the anhydride content decreases 

only about 5$. Trialkyl phosphate reagents are equally sta­

ble. 

The yellow color of the reagent darkens into orange 

sometime after 2 weeks, and this modifies the violet color of 

the end point to an undesirable green. When the reagent 

transmits less than 10$ at 425 mu or 20$ at 450 mu on a Beck-

man Model B spectrophotometer, it has undesirable color. 

The reagent develops the minimum color as long as an 

equimolar amount of anhydride is first added to react quickly 

with all the water in the perchloric acid and any alcohol in 

the ethyl acetate, at room temperature. Then the remaining 

anhydride is added cold to the cooled reagent. If all the 

anhydride and ethyl acetate-perchloric acid are mixed while 

cold, the destruction of water seems to accelerate condensa­

tion of impurities in the presence of excess acetic anhydride. 

The rate of acetylation in dimethoxyethane, chloroform, 

or trialkyl phosphates is similar to that in ethyl acetate. 

However, the glycol ether contains peroxides which apparently 

cause a dark brown color in the reagent unless the glycol 

ether is freshly distilled. The color of a chloroform or 

trialkyl phosphate reagent is much lighter yellow than the 

ethyl acetate reagent, but chloroform is more volatile than 

ethyl acetate. Ethyl benzoate, diethyl malonate, and 
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acetonitrile reagents develop unsatisfactory colors. Di­

methyl sulfoxide is too basic to be mixed safely with 72$ 

perchloric acid. 

Morgan (26) mentions the use of ethyl acetate as a sol­

vent for acetic anhydride although perchloric acid is added 

only at the time of reaction. 

Where ethyl acetate is used as a solvent for the alcohol 

sample;, the same amount is added to the reagent blank since 

ethyl acetate apparently contains a small amount of alcohol. 

Comparison of pyridine and ethyl acetate 

Table 2 demonstrates that an ethyl acetate reagent is 

far more reactive than a pyridine reagent and that perchloric 

acid definitely catalyzes acetylation in pyridine as well as 

in ethyl acetate at room temperature. Acetylation in ethyl 

acetate is quantitative in 5 minutes even for the sterically 

hindered 2-t-butylcyclohexanol, which reacts very slowly in 

the pyridine reagent. 

Table 2 also demonstrates that pyridine without acid 

catalyzes room temperature acetylation of the unhindered pri­

mary and secondary alcohols tested. In general the primary 

alcohols react rather rapidly with the acid-catalyzed pyri­

dine reagent and are quantitatively acetylated in 5 minutes. 

Secondary alcohols vary in reactivity depending on sterlc 

hindrance to acetylation and react quantitatively in from 10 

to 30 minutes or longer. 
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Table 2. 5 minute acetylatlons of 4 mmoles alcohol with 1:1 
solvent:acetic anhydride 

No acid-% 0.15M HC104 
reaction % reaction 

Alcohol EtOAc Pyridine Pyridine EtOAc 

Methyl 66 87 100 100 
Ethyl 25 45 100 100 
Neopentyl 17 38 95 100 

Isopropyl 5 10 80 100 
Diisobutyl carbinol 2 7 64 100 
Cyclohexanol 0 0 75 100 

2-Methylcyciohexanol 0 0 60 100 
2-t-Butylcyclohexanol 0 0 7 1.00 
t-Butyl 0 0 0 70 t-Butyl 

(Limit) 

Comparison of monocrotic acid catalysts 

Table 3 contains a comparison of the catalysis of vari­

ous monoprotic acids with that of perchloric acid. Per­

chloric is the most effective acid catalyst although p-

toluenesulfonic is almost as effective and has utility in an 

ethyl acetate reagent since it does not give high results 

with tetrahydrofurfuryl alcohol, as does perchloric, as shown 

in Table 8. 

Reaction time 

The effect of varying reaction times on the percentage 

recovery for amyl and neopentyl alcohols in ethyl acetate is 
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Table 3. Monoprotic 0.15M acid catalysis in five minute 
acetylation of 4 mmoles cyclohexanol with 3:1 sol­
vent : acetic anhydride 

Acid EtOAc - $ reaction Pyr. - $ reaction 

HC104 100 75 
HC1 100 30 
p-MePhSOgH 65 60 
ClgCCOOH 5 13 
HN03 4 55 
None 1 ca.5 

Table 4. Varying reaction time for 4 mmole 1° alcohol with 
0.15M HCIO4 in 3:1 ethyl acetate : acetic anhydride 

n-Amyl (ca. 98$) 
time-min. $ reaction 

Neopentyl (ca. 99$) 
time-min. $ reaction 

5 
4 
2 
1 
1/2 

97.4 
97.3 
95.2 
95.2 
92.0 

10 
5 
4 
2 

99.0 
100.3 
97.2 
89.5 

shown in Table 4. The reaction is extremely rapid and ap­

pears to be almost Instantaneous because the times include 

pipeting time. Probably the rate of mixing and/or dissolving 

controls the speed of the reaction. In pyridine, primary 
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Table 5. Reagent hydrolysis time: 5 ml, of 3:1 ethyl 
acetate:acetic anhydride 

Time Temp. Ml. pyr. Ml. 0.55N NaOH 
(min.) ml. HgO 

17 r.t. 5/3 61.43 
10 r.t. 5/3 61.40 
10 r.t. 0/3 54.55 
5 50° 5/3 61.47 
4 r.t. 9/3 61.47 

alcohols react in 5 minutes, and secondary alcohols react 

in from 10 to 30 minutes. 

Hydrolysis of acetic anhydride 

Conventional methods consist in heating in pyridine to 

catalyze the hydrolysis of acetic anhydride: 

C5H5N 
(CHgCO)gO + H20 2^ } 2 CHgCOOH (7) 

However, as long as the pyridine to water volume ratio is 

about 3:1, the anhydride hydrolyzes satisfactorily in 5 

minutes at room temperature, as is shown in Table 5. 

Reagents 

2M ethyl acetate reagent 

For instant use, add 0.8 gm. (0.47 ml.) of 72% per­

chloric acid to 30 ml. of ACS grade anhydrous ethyl acetate 
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In a 50 or 60 ml. flask. The flask may be cooled in cold 

water and stirred magnetically as 10 ml. of ACS grade acetic 

anhydride is pipeted into it. (Caution: never add per­

chloric acid to acetic anhydride as the acid catalyzes a 

sometimes violent surface reaction of its water of hydration 

with the anhydride.) 

For permanent quantity use, add 4 gm. (2.35 ml.) of 72$ 

perchloric acid to 150 ml. of ACS grade anhydrous ethyl ace­

tate in a clean, acetone-free 250 ml. glass stoppered flask. 

Then pipet in 8 ml. ACS grade acetic anhydride, which is suf­

ficient to react with all the water in the 72$ perchloric 

acid, and allow to stand at room temperature for at least 30 

minutes. Cool both the flask and a bottle of acetic anhy­

dride to 5°, add 42 ml. more of the 5° acetic anhydride, keep 

the flask at 5° for an hour, and allow the reagent to come 

to room temperature before use. It will develop a yellow 

color owing to impurities in the acetic anhydride, but the 

color and the stability of the anhydride are satisfactory 

for about 2 weeks. Over that period, a typical 5 ml. ali­

quot of reagent may vary from 26.86 to 26.76 meq. acetic 

acid after hydrolysis, and from 11.3 to 10.85 meq. acetic 

anhydride by the usual aniline methods. 

Pyridine, ethyl benzoate, and freshly distilled di-

methoxyethane are suitable solvents for instant use although 

acetylation in pyridine is slower. Chloroform and trialkyl 

phosphates are suitable for both instant and permanent use, 
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and both reagents are much lighter in color than an ethyl 

acetate reagent. 

2M pyridine reagent 

Follow directions for 2M acetylating reagent based on 

30 ml. ethyl acetate, but use 30 ml. of reagent grade pyri­

dine instead of ethyl acetate. Cautiously add the 72$ per­

chloric acid dropwlse to the pyridine. This reagent should 

be prepared fresh daily as it discolors after about 6 hours 

and the acetic acid blank decreases about 3$ after 24 hours. 

The reagent can be stored at 5° and kept overnight with the 

formation of a light violet color and only a 0.5$ decrease in 

the acid blank. 

For 3M pyridine reagent, follow the above directions, but 

use 20 ml. of pyridine, 10 ml. acetic anhydride, and 0.47 ml. 

72$ perchloric acid. 

Reagents for sodium hydroxide titration 

Sodium Hydroxide, 0.55N: To 185 ml. of saturated 

aqueous sodium hydroxide, add 430 ml. of water and 5400 ml. 

of methyl cellosolve (Union Carbide Chemicals Co.) or 5400 ml. 

absolute methanol. The reagent blank requires about 49 ml. 

of 0.55N sodium hydroxide titrant. The only satisfactory 

procedure for using methyl cellosolve Is to use only un­

opened cans since leaving the solvent stand after the can 

has been opened and closed allows enough aldehydes to form to 

cause a yellow color in the sodium hydroxide titrant. Methyl 
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cellosolve tends to leak less from a buret and to evaporate 

more slowly than methanol. 

Mixed indicator: Mix 1 part of 0.1$ neutralized aqueous 

cresol red with 3 parts of neutralized thymol blue. For 50 

ml. of 0.1$ indicator, weigh out 12 mg. of cresol red, 37 mg. 

of thymol blue, dissolve in 50 ml. of water, and neutralize 

with any solution of dilute base to a violet color. 

Potassium Acid Phthalate: Primary standard grade. 

Procedure 

Normal, non-acidic compounds 

Weigh a sample containing from 3 to not more than 4 

mmoles of hydroxy1 into a 125 ml. glass stoppered flask and 

pipet exactly 5 ml. of 2M acetylating reagent (10 mmoles of 

acetic anhydride) into the flask. Insoluble solids or im­

miscible liquids (such as glycerol) should be stirred until 

dissolution occurs. Allow to react at room temperature at 

least 5 minutes. Weakly basic amines require longer. Add 

about 1 to 2 ml. water from a squeeze bottle, shake, add 10 

ml. of 3:1 pyridine :water, and allow to stand 5 minutes. 

Titrate with 0.55N alcoholic sodium hydroxide using mixed in­

dicator, from a yellow to a violet end point. Dark colored 

samples can be titrated to an apparent pH of 9.8 using glass-

calomel electrodes and a pH meter. 

Run a reagent blank by adding exactly 5 ml. of 
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acetylating reagent to a 125 ml. flask containing 1 to 2 ml. 

water. Add 10 ml. of 3:1 pyridine :water, allow to stand 5 

minutes, and titrate as above. 

Caution: in order to be doubly careful regarding pos­

sible perchloric acid explosion, do not heat any acetylating 

solution containing perchloric acid, and dispose of solutions 

promptly when determinations are finished. Heating samples 

with perchloric acid is not recommended. Dilute perchloric 

acid in acetic acid and even in acetic anhydride as solvent 

has been safely used for years in the field of non-aqueous 

titrât ,ons. 

Standarize the 0.55N sodium hydroxide against potassium 

acid phthalate to the same end point. 

Use the difference between the blank, V^, and the sample 

titration, Vg, to calculate the percentage of hydroxyl com­

pound in the sample. 

% OH compound = (V"b - Vs) (N WaPH^ (^0,* wt.) (8) 

Sample wt., mg. 

Procedure for ethylsulfonylethanol 

Since ethylsulfonylethyl acetate possesses a slightly 

acidic hydrogen which blurs the end point in the sodium hy­

droxide titration and causes low results, a different pro­

cedure is used in place of the final sodium hydroxide titra­

tion. After the 5 minute acetylation period, add 10 ml. of 
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a 1.5M distilled N-methylaniline solution in chlorobenzene to 

the flask instead of water and the water-pyrldine solution. 

After 15 minutes, titrate the excess N-methylaniline poten-

tiometrically with 0.3N perchloric acid in glacial acetic 

acid, using lithium chloride in glacial acetic acid in a 

sleeve calomel electrode. 

React exactly 5 ml. of the acetylating reagent similarly 

with 10 ml. of the N-methylaniline solution and titrate po­

tent iometrically as above. Fit the difference between the 

volume required for the reagent blank and for the sample into 

the above equation with the normality of the perchloric acid 

to find the percentage of the hydroxyl compound. 

The above method is only applicable to water-free sam­

ples since it measures the amount of unreacted acetic an­

hydride. 

Acetylation Samples 

Purification of samples 

Many of the compounds were samples from chemical com­

panies. Some were Eastman white label chemicals. Most 

liquid alcohols were fractionally distilled through a 24 

inch Podbielniak partial reflux fractional distillation col­

umn, using vacuum distillation if necessary. Many of the 

solids were vacuum sublimed. The methods of purification and 

any analyses carried out on the compounds are listed in 
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Tables 6 and 7. The amines and phenols were treated in the 

same manner. 

Analysis of 2-t-butylcyclohexanol 

While it was assumed that all the 2-substituted cyclo­

hexanol s were mixtures of cis and trans isomers, the mixture 

of cis and trans-2-t-butylcyclohexanols was analyzed by infra­

red analysis to demonstrate the content of this mixture. The 

compound was first vacuum sublimed twice; the first fraction 

showed a carbonyl impurity, but the second fraction was pure 

although it contained less of the cis isomer as is shown in 

Figure 1-

The infrared analysis of this second fraction was carried 

out using the 10.34 micron band mentioned by G-oering, Reeves, 

and Espy (16). The trans isomer had a band at 9.47 microns 

but is transparent at 10.34. The pure cis isomer was fur­

nished by Prof. G-oering; 26.3 and 30.5 mg. per 10 ml. samples 

were analyzed and $ transmittances found to be 45 and 39. A 

37.6 mg. per 10 ml. solution of the second fraction was ana­

lyzed and the $ transmittance found to be 44. All readings 

were subtracted from 100 and 15 units were subtracted from 

these numbers to correct for a 100$ transmittance line, giving 

40, 46, and 41 units, respectively. Linear interpolation be­

tween 46 and 40 gave 27 mg. or 72$ cis isomer in the mixture. 
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Table 6. Purification methods and physical properties of alcohols 

Alcohol 
Purification, 
purity (lit.) 

Mp. or bp. 
(lit.)°C V5' (lit.) 

Isoamy1 Fr. dst. 130 1.4052 
Benzoin 99.2$ (14) — — 

Benzoin oxime Cryst. — — 

cis-2-Buten-l,4~âiol Fr. dst. 89 (1 mm.) 1.4752 
t-Butyl Fr. dst. 81 1.3854 (1.3878) 
2-t-Butylcyclohexanol Vac. sbl. 44-5 (cis 54-5) -

t-Butyl hydroperoxide 88.9$ (12) -•  -

Cinnamyl Dst., Vac. sbl. 110 (3 mm.) — 

(1.4626) Cyclohexanol Fr. dst. 95 (20 mm.) 1.4635 (1.4626) 
2-Cyclohexylcyclohexanol Fr. dst. 98 (1 mm.) 1.4990 

(1.4242) Diisobutyl carbinol Fr. dst. 76 (5 mm.) 1.4210 (1.4242) 
Dimethylbenzyl Fr. dst. 66 (4 mm.) 1.5204 
2,5-Dimethyl-2,5-dl-

94.8$ (12) hydroperoxyhexane 94.8$ (12) — -

Diphenylcarbinol Cryst., EtgO 67.8 (68-9) -

Ethyl None M — 

2-Ethylhexanol Fr. dst. 99 (5 mm.) 1.4298 
Ethylsulfonylethanol Cryst., CHC1 , CCI 41.5-3 (40-2.5) -

Furfuryl Fr. dst. 167 1.4838 (1.4868) 
Glycerol 96.5$ (33) - -

Methyl None — — 

(cis 1.4633) 2-Methylcyclohexanol Fr. dst. 50 (1 mm.) 1.4623 (cis 1.4633) 
Neopentyl Fr. dst. 54-5.5 (55-6) trans 1.4597) 
2-Phenylcyclohexanol Fr. dst. 98 (1 mm. ) 1.5339 
Propargyl None - 1.4305 
Isopropyl Dst. fr. NaBH4 - -
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Table 6. (Continued) 

Alcohol 
Purification, 
purity (lit.) 

Hp. or bp. 
(lit.)°C 

nD25° (lit.) 

Tetrahydrof urf uryl Fr. dst. 175 1.4499 (1.4499) 
2,2,2-Trifluoroethanol Fr. dst. 73.5 - (1.2895) 
Triphenylcarbinol 98.0$ (11) 161-2 (162.5) -

2,2,4-Trimethyl-
49-50 (49-51) pentan-1,3-diol Vac. sbl. 49-50 (49-51) 



www.manaraa.com

24 

Table 7. Purification and properties of phenols, amines, etc. 

Compound 

Aniline 
Dlphenylamlne 
N-Methylanlline 
o-Nltroanlllne 
m-Nitroaniline 
p-Nitroaniline 

o-t-Butylphenol 
2,6-Di-t-butyl-p-

cresol 
p-Methyoxyphenol 
2,3-Naphthalenediol 
Resorclnol 

t-Butyl mercaptan 
Cyclohexanone oxime 
Lactose 

Purification, 
purity 

Dst. 
Cryst., Pet. 
Dst. 
Vac. sbl. 
Cryst., Bz. 
Vac. sbl. 

Fr. dst. 

Cryst., MeOH 
Eastman W. L. 
Cryst., NaOH 
Cryst., EtgO, Bz. 

9Q$ min. 
Eastman W. L. 
U.S.P. 

Mp. or bp. 

(lit.)°C> nD250 

45 (2 mm.), 1.5823 
53-4 (53) 
60 (2 mm.), 1.5679 
70-1 (71.5) 
114-5 (114) 
148-9 (147.5) 

74 (1 mm.), 1.5209 

69-70 (62-8) 
53-4 (53) 
162-3 
109-10 (110) 
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Figure 1. Perkin Elmer Infracord infrared curves of 2-t-
butylcyclohexanol isomers in 10 ml. of CSg. A 
shows trans band at 9.47; C and C1 show 10.34 els 
band used in analyzing B. D, E (and B), and F are 
the first sublimate, second sublimate, and bottoms 
of a Dow Chemical sample; D showed a carbony1 im­
purity at 6.0 microns. 
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RESULTS 

Alcohols and Glycols 

Table 8 presents analytical data for the quantitative 

acetylatlon of various alcohols and glycols in ethyl acetate 

Table 8. Analysis of 1° and 2° alcohols and glycols in 
EtOAc in 5" 

Alcohol Average Remarks 

Isoamyl 98.1 + 0.2 
Cinnamyl 98.5 + 0.4 Pyr., EtOAc -
Ethyl 99.1 + 0.5 
2-Ethylhexanol 99.4 + 0.2 
Ethylsulfonylethanol 98.9 + 0.2 
Furf uryl 99.2 + 0.2 Pyr., EtOAc -
Methyl 99.9 + 0.3 
Neopentyl 98.0 + 0.3 
Propargyl 100.1 + 0.3 Pyr. or EtOAc 
Tetrahydrofurfuryl 97.5 + 0.5 Pyr., EtOAc -
Trifluoroethyl 98.9 + 0.6 

2-t-Butylcyclohexanol 99.5 + 0.6 
Benzoin 99.3 + 0.3 
Benzoin oxime 99.7 + 0.1 3M pyr., 15" 
Cyclohexanol 100.1 + 0.3 
2-Cyclohexylcyclohexanol 98.6 + 0.3 
Di-isobutylcarblnol 100.5 + 0.1 
Diphenylcarbinol 100.3 + 0.3 
2-Methylcyclohexanol 102.9 + 0.3 
2-Phenylcyclohexanol 102.2 + 0.4 
Isopropyl 100.3 + 0.3 

cis-2-Buten-l, 4-diol 98.8 + 0.4 Pyr. 
Glycerol 97.1 + 0.5 
2,2,4-Trimethylpentan-

1,3-diol 100.5 + 0.1 
Tris (hydroxymethyl) 

amino-methane 98.5 + 0.1 3M pyr. 

94# 
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Table 9. Analysis of phenols, amines, hydroperoxides, etc. 

Compound Average Remarks 

o~t-3utylphenol 101.9 0.2 5-20", No nucl. acetylatlon 
2,6-Di-t-butyl-p-cresol 100.4 0.5 5-20", " 11 " 
p-iiethoxyphenol 102.2 0.1 5-2011, 11 11 " 
2,3-:Maphthalenediol 102.7 0.7 
Resorclnol 100.5 0.8 

Diphenylamine 101.8 0.9 45", Nuclear acetylatlon 
o-Nitroaniline 101.3 0.2 30" 
m-Nitroaniline 100.2 0.3 2011 
p-Nitroaniline 99.3 0.4 60" 

t-Butyl hydroperoxide 

CO CO 

0.3 Pyr., 10" 
2,5-Dimethyl-2,5-dihydroperoxy-

Pyr., 10" hexane 94.9 0.4 Pyr., 10" 

t-Butyl mercaptan 100.4 0.3 10", 0°, Aliquot in EtOAc 
Cyclohexanone oxime 99.5 0.1 3M pyr., 15" 
Lactose 101.3 0.5 
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in 5 minute reaction times. Where pyridine reagent is used, 

this is noted. Regardless of steric hindrance or electronic 

properties, all alcohols were immediately acetylated. In 

the case of benzoin oxime, both the alcoholic hydroxy1 group 

and the oxime hydroxy1 group were acetylated. 

Phenols, Amines, and Miscellaneous 

Phenols were acetylated in 5 minutes as shown in Table 

9 regardless of steric hindrance; high results were not ob­

served with such compounds as p-methoxyphenol even though 

longer reactions times were deliberately used. Such nuclear 

acetylatlon was observed with diphenylamine where the per 

cent acetylatlon increased slowly with time. The nitroani­

line s required from 20 to 60 minutes reaction time, no great 

improvement over standard acetylatlon in pyridine. The end 

point in the sodium hydroxide titrimetric finish for resor-

cinol was vague and broad, and the precision was thus poor. 

Hixtures 

Tertiary alcohols such as t-butyl alcohol and -di­

methyl benzyl alcohol do not react at room temperature in the 

pyridine reagent. A number of primary and secondary alcohols 

were determined in the presence of these alcohols as is shown 

in Table 10, using times of 10 minutes for primary alcohols 

and 20 to 60 minutes for secondary alcohols. Slightly longer 
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Table 10. Analysis for 1° or 2° alcohols in 3° alcohols in 
pyridine 

> recovery 
1° or 2°alcohol-time11 3° alcohol-meq. % parity 

Methyl 
H 

7 t-Butyl -4 
" 8 

99.1 
99.3 

2-Ethylhexanol 
II 

10 II 4 

" 8 
100.5 
100.7 

Cyclohexanol 
II 

18 II 4 

" 8 
99.9 
100.3 

Isopropyl 20 II 4 

11 8 
99.0 
99.7 

Neopentyl 
II 

10 Dimethylbenzy1-4 
" 8 

100.0 
100.1 

2-Methylcyclo-
hexanol 

II 
60 " 4 

11 8 
99.9 
100.7 

Cyclohexanol 
II 
» 

20 2-t-Butylcyclohexanol-
II 
n 

.10 
20 
30 

mo I/o 
mo I/o 
mol fo 

100.7 
101.6 
106.5 

reaction times were required for the mixtures than for pure 

compounds because 2 ml. of pyridine was added to each mixture. 

More hindered secondary alcohols such as 2-cyclohexylcyclohex-

anol would probably require longer reaction times than 2-

methylcyclohexanol in the pyridine reagent. Table 10 also 

contains data on the determination of cyclohexanol in 72$ 

cis-2-t-butylcyclohexanol using the pyridine reagent. As the 



www.manaraa.com

37 

Table 11. Analysis for resorcinol In hindered phenols in 
pyridine-20" 

Hindered phenol-meq. % recovery resorcinol 
four meq. 

o-t-Butylphenol -4 109 
11 2 98.5 
11 1 99.8 

2,6-Di-t-butyl-p-cresol-4 98.0 
" 2 99.6 
11 1 98.0 

concentration of the latter is increased, more of the trans 

isomer is present to react with the pyridine reagent and the 

determination becomes merely an estimation. 

Table 11 contains data on th.s determination of resor­

cinol and presumably other phenols in the presence of hin­

dered phenols in the pyridine reagent. Apparently when the 

concentration of o-t-butylphenol becomes appreciable, it re­

acts slightly during the 20 minute reaction period and causes 

high results. Both phenols are too weak to interfere with 

the base titration. 

Interferences 

Water 

In ethanol-water mixtures, perchloric acid catalyzes 

the acetylatlon of ethanol even though more water is present" 



www.manaraa.com

38 

Table 12. Effect of HgO on acetylatlon of EtOH (11 mmole 
Ac gO ) 

mmoles EtOH mmoles HgO wt. $ EtOH % Reaction 

4.0 6.6 63 100.6 
3.8 7.0 58 99.6 
3.4 10.0 47 93.7 
3.5 12.0 43 80.3 

than the amount of anhydride added in a 5 ml. aliquot of ethyl 

acetate reagent. Burton and Praill (4) report a similar cat­

alytic effect. However, for quantitative recovery of the 

ethanol, it is necessary to have a definite excess of anhy­

dride over water, as is shown in Table 12. 

By increasing the concentration of acetic anhydride to 

a 1:1 solvent : anhydride ratio (4M), it should be possible to 

determine as low as 25 wt.$ solutions of ethanol in water. 

Functional groups 

Because acetylatlon in ethyl acetate probably proceeds 

through a reactive positive species and because the reagent 

contains perchloric acid, a number of functional groups, such 

as the carbonyl group, interfere to varying degrees. 

The interference of simple ketones, such as acetone, is 

eliminated by chilling sample and reagent to 0° or by using 

the pyridine reagent. Cyclic ketones which are somewhat 
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enolic, such as cyclohexanone, interfere even at 0°, but do 

not interfere with acetylatlon in pyridine. Aldehydes inter­

fere seriously in both ethyl acetate and pyridine; Fritz and 

Hammond (12) report that aldehydes also interfere with the 

standard method of acetylatlon in hot pyridine. The carbonyl 

group in benzoin, however, does not interfere with acetyla­

tlon of the alpha-hydroxyl group. 

Table 13 summarizes the other important interferences 

such as double bonds and the tetrahydrofuran ring. The triple 

bond of propargyl alcohol does not appear to interfere with 

acetylatlon in either solvent as the results in Table 8 dem­

onstrate. Only benzene rings activated by a hetero atom, such 

as oxygen in 1,3-dlmethoxyethane, constitute an interference 

in ethyl acetate. 

Since tertiary alcohols react about 70% in the ethyl ace­

tate reagent, tertiary hydroperoxides are better analyzed with 

the pyridine reagent in case appreciable amounts of tertiary 

alcohols are present. 

Ethylsulfonylethanol acetylates quantitatively, but the 

acetate possesses an acidic hydrogen which is partially ti­

trated by NaOH. Hence, N-methylaniline in chlorobenzene is 

added to react with the excess anhydride, and the excess N.-

methylaniline is then titrated with perchloric acid in glacial 

acetic acid. 

Tris(hydroxmethyl)aminomethane is insoluble in the ethyl 

acetate reagent, but all 3 hydroxyl groups and the amino 
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Table 13. Interferences tested with alcohols or alone 

% Reaction of alcohol 
Interference - mmoles EtOAc Pyr. 

Benzaldehyde 4 270 - 0° 93 
Formaldehyde 12 — 129 
Formic acid 8 - 147 

Acetone 2 99.5 
II 20 100.0 - O° 99 

Diethyl ketone 12 114,101.0 - 0° 98.8 
Cyclohexanone 4 155 - 0° 98.0 
Cyclopentanone 4 109 - 0° 99.0 
Acetophenone 12 100.0 -

Benzene 16 99.5 
Toluene 16 100.0 — 

Durene 16 100.5 — 

m-Dimethoxyben­
zene 4 146 99.5 

Compounds tested alone 

Aeetylacetonea 

Dibenzoylmethanea 

Diethyl malonate 
Ethyl cyanoacetate 

Cinnamyl alcohol 
1,3-Dimethoxybenzene 
Ethyls ulfonylethanola 
Furfuryl alcohol 
Indene 
Isobutyraldoxime 
Maleic hydrazide 
Nitromethanea 
Phthalimide 
Tetrahydrofurfuryl ale, 
Thiourea 
Triphenylmethane 
Urea 

56(30"),106 (70"). 
61(15"),104 (80") 

6 ( 6 0 " ) °  
6(60" ) °  

94 
56 

60-92 
Polymer 

94 (45") 
150 
78 (30") 
NR 
32 (60") 
118 
3 
NR 
NR 

98.1 
NR 

99.2 
NR 
75 

97.5 

Fugitive end point in sodium hydroxide titration. 

Determined with N-methylaniline and perchloric acid. 
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group acetylate rapidly in a 2:1 pyridine : anhydride (311 ) 

reagent. Oximes appear to interfere non-stoichiometrically 

in ethyl acetate, but at least ketoximes are acetylated 

quantitatively in pyridine. 
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RESULTS AND DISCUSSION SUPPORTING PUBLISHED MECHANISMS 

A number of experiments were carried out that support, 

but do not in themselves establish exclusively mechanisms in 

the literature. These results are grouped together to clar­

ify, establish, and extend the scope of the method and inter­

ferences. 

Nitrogen Bases 

The mechanistic hydrolysis of the pyridine-acetylium 

ion proposed by Gold and Jefferson (17) can be modified for 

a reaction with alcohols, preceded by acid catalysis to form 

an equilibrium amount of the pyridine-acetylium ion: 

Ac gO + C5H5NH+ V CgHgNAc* + HOAc (9) 

C^NAc"1" + ROH ) C5H5NH+ + ROAc (10) 

Support for the pyridine-acetylium ion is in the next section. 

The pyridinium ion may dissociate into a proton and pyr­

idine, and catalyze the formation of the pyridine-acetylium 

ion in reaction 9 via the following steps : 

C5H5NH+ V C5H5N + H+ + ACgO s V ACgOH* (11) 

Ac gOH+ + CgHgN ^ C5H5NAc+ + HOAc (12) 

The acetic anhydrium ion probably does not dissociate into 
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the free acetylium ion but reacts reversibly with the 

pyridine. 

Reaction 10 is sensitive to steric hindrance as are all 

displacement reactions. In pyridine primary alcohols acet­

ylate in 5 minutes, secondary alcohols in 10 to 60 minutes, 

and tertiary alcohols not at all. Apparently tertiary alco­

hols are too bulky to displace the pyridine molecule from the 

pyridine-acetylium ion. Reaction 10 seems to be rate deter­

mining for secondary and tertiary alcohols, but the equilib­

rium represented in reaction 9 may be the slow step in acet­

ylatlon of the primary alcohols. Hence primary and secondary 

alcohols can be determined in the presence of tertiary alco­

hols. In fact, as is shown in Table 10, cyclohexanol and 

other more reactive alcohols can be estimated in the presence 

of small amounts of the slow reacting, bulky 2-tert-butyl-

cyclohexanol, a secondary alcohol. 

Comparison of Basic Solvents 

Table 14 illustrates the effect of steric hindrance 

around the basic nitrogen for perchloric acid-catalyzed acet­

ylatlon in basic solvents. Acetylatlon proceeds at similar 

rates in 3- and 4-methylpyridines and in pyridine, but it is 

considerably slower in 2-methylpyridine, 2,6-dimethylpyridlne, 

and dimethylaniline. The nitrogen atom is, hence, definitely 

involved in the rate-determining step. 
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Table 14. 5 Minute acetylatlons of 4 mmoles alcohol with 
3:1 basic solvent : acetic anhydride, 0.15M per­
chloric acid 

Solvent EtOH-X reaction Cyclohexanol-^ reaction 

Pyridine 100 86 
2-Methyl-pyridine 39 (35°)* 5 
3-Methyl-pyridine 93 85 
4-Methyl-pyridine 100 92 
2,6-Dimethyl-

pyridine 30 (45°)* — 

Dimethylaniline 26 7 
Dimethylacetamide 10 1 

^The pyridinium perchlorates of these samples were in­
soluble at room temperature and the reagents and samples had 
to be heated to the specified temperatures to retain homo­
geneity. 

In fact, acetylation of ethanol in pyridine with no per­

chloric acid present is actually faster than in the latter 3 

solvents. Acid-catalyzed acetylation of ethanol in dimethyl-

acetamlde is slower than uncatalyzed acetylation of ethanol 

in ethyl acetate with no acid present, suggesting that amides 

inhibit acid-catalyzed acetylation. 

Aprotic or Neutral Solvents 

The Burton-Praill (4) mechanism involves the formation 

of a reactive Intermediate, the acetyl!um ion, which should 

react rapidly and irreversibly with an electrophile. Hence 
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as long as the medium is not basic and is dry, an unhydrated 

proton ought to catalyze acetylation of an alcohol or phenol 

at roughly the same rate, irrespective of solvent. The pres­

ence of acetic anhydride insures the absence of any water 

which would hydrate a proton. 

The fact that the acetylation of all alcohols and most of 

the phenols is quantitative in 5 minutes indicates that a re­

active species is an intermediate. This is especially true 

considering the steric hindrance in cis-2-t-butylcyclohexanol 

and 2,6-di-t-butyl-p-cresol. Table 4 shows that acetylation 

of simple alcohols is so rapid that it is almost instantane­

ous. By the nature of its size, the acetylium-pyridine ion 

acetylates the former compounds only slowly. 

Acetylation of 2-t-butylcyclohexanol in five minutes was 

used as a test of the speed of acetylation in various sol­

vents. Acetylation in chloroform, triethyl phosphate, ethyl 

acetate, and dimethoxyethane was virtually complete, indi­

cating that the reaction path was virtually independent of 

the neutral solvent used. 

Burton and Praill (4) found evidence for the existence 

of the acetylium ion by isolating considerable amounts of 

p-methoxyacetophenone from mixtures of the acetylating re­

agent and anisole. Table 13 indicates that both indene and 

m-dimethoxybenzene are 94 and 56# acetylated, respectively, 

probably undergoing the following reactions : 



www.manaraa.com

46 

CQ 

"f|— OMe 

V 

+ CHgCO 
+ 

0H
S 

+ H 
r+ 

(13) 

OMe 

+ CH3CO+ + H 
,+ 

(14) 

The fact that acetylatlon at reflux temperatures in 

pyridine or acid-catalyzed acetylation in pyridine at room 

temperature do not proceed through the intermediate acetylium 

ion is indicated by the fact that neither indene nor m-di-

methoxybenzene are acetylated under either condition. The 

pyridine-acetylium ion is apparently not capable of nuclear 

acetylation. 

Adding an aliquot of acetylating reagent containing 11 

meq. of anhydride to a mixture of 12 meq. of water and 3.5 

meq. of alcohol should hydrolyze most of the anhydride and 

preclude appreciable acetylation, if the anhydride molecule 

were the acetylating species. However, as Table 12 shows, 

80/o of the alcohol is acetylated. This result is consistent 

with the random Instantaneous reaction of the acetylium ion 

on colliding with either water or alcohol. Apparently the 

reagent must remain dry and acid catalysis must remain ef­

fective until all the anhydride is destroyed. 
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Transestarification 

Acetylation in esters such as ethyl acetate might in­

volve a transesterification or ester interchange: 

tY+ v 
He-C6H10OH + EtOAc ——f EtOH + Me-C6H10OAc (15) 

If this is the case, the speed of acid-catalyzed acetylation 

would be due to the rapid acetylation of a simple primary al­

cohol, ethanol, instead of a hindered alcohol such as 2-

methylcyclohexanol. 

This possibility was tested by preparing a 0.15M solu­

tion of dry perchloric acid in ethyl acetate with enough ace­

tic anhydride being added to destroy all the water present in 

the acid and all the alcohol present in the ethyl acetate. 

This reagent was added to separate samples of 2-methylcyclo-

hexanol and t-butyl alcohol, and the mixtures were allowed to 

stand for an hour. A 2M solution of acetic anhydride in 

pyridine was added for a 5 minute reaction period. 

The 2-methylcyclohexanol was 47/2 acetylated, compared to 

a 60% acetylation when acid-catalyzed acetylation in pyridine 

was employed. The t-butyl alcohol failed to react as it did 

under similar conditions in pyridine. If appreciable trans-

esterification had taken place, a greater degree of acetyla­

tion would have been found. Of course, the fact that acid-

catalyzed acetylation takes place as rapidly in solvents 

which are not esters also mitigates against a 
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transestarification mechanism being the sole mechanism. 

Triphenylcarbinol and Diphenylcarbinol 

Diphenylcarbinol and presumably other alcohols can be 

estimated in the presence of triphenylcarbinol with the ethyl 

acetate reagent, provided there is an excess of perchloric 

acid catalyst over the amount of triphenylcarbinol present. 

The triphenylcarbinol or triphenylmethyl acetate consumes an 

equimole amount of perchloric acid in ionizing quantitatively 

to the stable colored tripheny 1 carbonium ion, and the water 

released is then removed by reaction with acetic anhydride : 

ACgO 

PhgCOH + H+ ) Ph3C+ + H20 ) 2H0Ac (16) 

Fritz and Fulda (11) have utilized the same reaction in ti­

trating triphenylcarbinol in acetic anhydride with perchloric 

acid. 

Experiments with less perchloric acid present than tri­

phenylcarbinol consistently gave incomplete acetylations of 

diphenylcarbinol as shown in Table 15. Triphenylcarbinol 

does undergo some acetylation before it dehydrates, and the 

determination of any alcohol in its presence is, hence, an 

estimation unless the triphenylmethyl acetate is hydrolyzed in 

acid. Triphenylsilanol probably does react with the acetic an­

hydride, but the silyl acetate hydrolyzes rapidly in water, 

releasing acetic acid rather than forming a triphenylsill-

conium ion. 
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Table 15. Acetylation of PhgCHOH in PhgCOH or PhgSiOH with 
2M or 3M acetic anhydride in ethyl acetate (15") 

Mmoles PhgCHOH Mmoles PHgCOH Mmoles HCIO^ # reaction 

2. 0.5 0.8 99.50° 
2 a 1 Q 1.6 102.5, 104 
3.5 1.5 0.8 82, 92 
3.5 1.5. 0.8 88, 89 
2.5 2.5b 0.8 99.9 
0 0.8 0.8 12 (15, 30") 
0 0.5 0.8 0° 

aSolid mixture dissolved in EtOAc before reagent added. 

bTriphenylsilanol. 

°Water only added to hydrolyze the Ph^SOAc. 

If there is no rapid equilibrium between perchloric 

acid and the acetylium ion in reaction 3, all the perchloric 

acid should be consumed in cases where triphenylcarbinol is 

in excess over the acid. However, at least 80# of diphenyl­

carbinol is acetylated before this occurs. This indicates 

that the reaction and establishment of the equilibrium are 

probably more rapid than the dehydration in reaction 16, and 

possibly that the equilibrium in reaction 3 lies to the 

right, since the acetylium ions must be generated over 3 

times to acetylate at least 80# of the diphenylcarbinol. 

It is interesting that triphenylcarbinol acetylates 

about 12# in ethyl acetate reagent regardless of the time of 
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Table 16. Acetylatlon of Ph^COH and t-BuOH in various 

solvents containing 0.75 meq. HC104 (15") 

Solvent 
% reaction 0° 

3 mmolea t-BuOH 
% reaction 
1 mmole PhgCOH 

EtOAc 70 16a 
EtOBz 99.5 18a 
(EtOOC)gCHg - 10a 

(BuO)gPO 92 81 
(MeO)2C^i4 64 30 a 

CHgCN 89 23 

PhCl 31a 

CHC13 
99.5 14a 

An immediate yellow color occurred as the reagent was 
added, and a ppt. of the yellow salt followed. In the other 
solvents, color formation was slower. 

reaction. This indicates that either the acetylium ion is 

present and acetylates the hydroxyl group, or more probably 

that the equilibrium is rapid enough to generate acetylium 

ions, before the protons are consumed in the slower dehydra­

tion which stops acetylation. The triphenylmethyl acetate is 

also ionized by acid. 

This effect was studied in different solvents and only 

in tributyl phosphate was a nearly quantitative acetylation 

observed, as shown in Table 16. Adding dry perchloric acid 

in tributyl phosphate to triphenylcarbinol and then adding 
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a tributyl phosphate reagent gave only 12# acetylation, 

demonstrating that dehydration can take place in this sol­

vent. Hence, in tributyl phosphate the equilibrium must be 

established extremely rapidly and may lie farther to the right 

than in the other solvents. Ionization of triphenylmethyl 

acetate may also be slow in this solvent. 

Tertiary butyl alcohol was analyzed in various solvents 

by slowly pipeting a chilled solution of the alcohol into a 

rapidly stirred chilled reagent so as to minimize dehydra­

tion and allow time for regeneration of the acetylium ion. 

The results in Table 16 indicate ethyl benzoate and chloro­

form are suitable solvents for the estimation of alkyl ter­

tiary alcohols. 
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DISCUSSION 

Rate of Acetylation in Neutral and Basic Solvents 

Acetylation in aprotic or neutral solvents is more 

rapid than in basic solvents. Assuming that the concentra­

tion of the hydrogen ion controls the rate of acetylation in 

either type of solvent, it is of interest to compare these con­

centrations. All of the perchloric acid in the neutral sol­

vents is potentially available as hydrogen ions so that the 

concentration of hydrogen ions would be 0.15M. The perchloric 

acid in the pyridine-acetic anhydride solvent is present as 

the pyridinium ion; if water were present, the pyridinium ion 

could ionize in this way: 

C5H5NH+ + H20 v ^ C5H5N + H30+ (17) 

Since acetic anhydride and not water is present, reac­

tion 11 can be assumed to represent the ionization of the 

pyridinium ion, forming the acetic anhydrium ion. The concen­

tration of the acetic anhydrium ion can be calculated crudely 

by assuming that the K& of 7 x lO~^ for the pyridinium ion in 

water is the same in the pyridine-acetic anhydride solvent, and 

assuming that the same ionization constant expression for water 

can be written for this solvent system: 

A 0H+ = Ka (C5H5H) = 7 X 10-S(9) „ 4 x 10-7 (18) 

(C5H5NH+) (0.15) 
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If it is assumed that most of the acetic anhydrium ion 

is converted into the pyridine-acetylium ion as in reaction 

12, then the minimum concentration of the acetylating species 

is of the order of 10~7M. The concentration of the acetylium 

ion in neutral solvents cannot be readily found, but some in­

dication has been given above at least for tributyl phosphate 

that most of the 0.15M acid is possibly converted to the 

acetylium ion; the maximum concentration of the acetylium ion 

in tributyl phosphate would be of the order of 10"^M. If the 

rate constants for acetylation in both types of solvents are 

similar, then the rates ought to differ by a maximum of a 

g 
factor of 10 . This may vary with the steric properties of 

an alcohol because the rate determining step for the acetyla­

tion of a hindered alcohol in pyridine may not be the same as 

for a primary alcohol such as ethanol. 

Acetylations in neutral solvents, then, are rapid com­

pared to acetylations in basic solvents, but are limited by 

side reactions with other electroohiles. Acetylations in 

pyridine at room temperature are relatively slow but have the 

advantage of very few interferences in that a less reactive 

species is probably present in small concentration and is 

generated by a rapid enough equilibrium to be analytically 

useful. 
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Acetylation of Alcohols 

Table 8 presents analytical data for the quantitative 

acetylation of various alcohols and glycols in ethyl acetate 

in 5 minute reaction times. Regardless of steric hindrance 

or electronic properties, all alcohols were immediately acety­

lated. The average precision of the method is 0.3#. The 

accuracies ranged from 98 to 100# in most cases. A number of 

compounds were checked for purity by other methods, and the 

difference was never greater than 0.5#. 

Acetylation in ethyl acetate is very advantageous for 

sterically hindered alcohols such as the 2-substituted cyclo­

hexanol s . Both 2-phenylcyclohexanol and 2-cyclohexylcyclo-

hexanol are quantitatively acetylated in 45 minutes by stand­

ard methods of heating in pyridine-acetic anhydride on an 80° 

steam bath. The 2-t-butylcyclohexanol used in this research 

is only 84# acetylated in 45 minutes and 99# acetylated in 60 

minutes by standard methods. 

While it is assumed that all the 2-substituted cyclo-

hexanols used consisted of a mixture of cis and trans isomers, 

the 2-t-butylcyclohexanol used was analyzed by infrared meth­

ods and found to be about 72# of the cis isomer. G-oering, 

Reeves, and Espy (16) noted qualitative acetylatlon at 0° at 

2 hours for the trans isomer, but at 2 days for the cis iso­

mer. The cis isomer, in which the steric interaction due 

to the bulk of the t-butyl group precludes the chair 
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conformation of an equatorial t-butyl group, possess the hy-

droxyl group in the hindered, less easily esterified axial 

position. Acid-catalyzed acetylation in pyridine for 1 hour 

of the mixed els and trans isomers used gave 26^ reaction, a 

fair estimate of the amount of trans isomer present and an in­

dication of the unreactivity of the cis isomer; 2-methylcyclo-

hexanol, for instance, is quantitatively acetylated in 1 hour. 

Acetylation of Tertiary Hydroperoxides 

Tertiary hydroperoxides can be safely and conveniently 

analyzed at room temperature with the acid-catalyzed pyridine 

reagent, whereas existing methods which require heating in 

pyridine would tend to decompose some of the hydroperoxide be­

fore it is completely acetylated. Since tertiary alcohols are 

a likely impurity, it is preferable to use the pyridine re­

agent rather than the ethyl acetate reagent which would react 

with the tertiary alcohol. Tertiary alcohols are not af­

fected by the pyridine reagent. If it were not for the pres­

ence of tertiary alcohols, tertiary hydroperoxides could 

probably be analyzed in ethyl acetate since they would not be 

expected to dehydrate as easily: 

HgC=CMe2 + HgOg ( H ^uOOH + AcgO —£-) xBuOOAc & HOAc (19) 

? 

The dehydration would involve the extrusion of hydrogen 
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peroxide which would not appear to be as feasible as the ex­

trusion of water in the case of tertiary alcohols. 

Hydrogen peroxide and peroxy acids might also be acety­

lated if the acetyl peroxide and peroxides formed were stable 

to the basic titrant used. 

Silbert and Swern (51) have acetylated hydroperoxides in 

pyridine and ether on a preparative scale. 

Acetylation of Amines 

Acetylation of amines in neutral solvents is retarded by 

buffering of the perchloric acid catalyst by the amine. In 

cases where the amine is too weakly basic to be an effective 

buffer, such as the case of diphenylamine, the acetylation is 

slow because diphenylamine possesses resonance structures in 

which the nitrogen's lone pair electrons are found in either 

benzene ring. For this same reason it is subject to nuclear 

acetylation. 

2,2'-Dipyridylamine, the pyridine analog of diphenyl­

amine, would not be expected to undergo nuclear acetylation 

as a side reaction. However, the tertiary pyridine nitrogens 

form the unreactive, insoluble pyridinlum salts and no acety­

lation takes place in ethyl acetate. Even though tributyl 

phosphate dissolves the pyridinlum salts, only 6% acetylation 

takes place in 30 minutes. 

Aniline and N-methylaniline acetylate readily in neutral 
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solvents even though, their anilinlum ions are certainly 

formed, because only 20> as much perchloric acid as aniline 

is added, and the free base can then be acetylated. Ini­

tially some acetylium ions may be present and will react im­

mediately with the free base. When 80% of the aniline is 

acetylated, the remaining 20% present as the anilinium ion 

must be supplied by equilibrium dissociation. Probably the 

mechanism is similar to reaction 11. After this point, the 

farther along the reaction proceeds, the more acid available 

to form acetylium ions and the faster the reaction should take 

place. 

The nitroanilines acetylatie as slowly in neutral solvents 

as in refluxing pyridine-acetic anhydride reagent. The o and 

p-nitroanilines both possess resonance structures in which 

the nitrogen's lone pair electrons are not available for re­

action. p-Nitroaniline requires 45 minutes for acetylation 

by standard methods. 

Acetylation of Phenols 

Acetylation of phenols is not complicated by buffering 

effects as is acetylation of amines. However, any unreacted 

phenol is either titrated or renders the sodium hydroxide 

titration less sharp. In case the phenolic anion is colored, 

the indicator change is smeared. 

Acid-catalyzed acetylation of 2,6-disubstituted phenols 
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is rapid and quantitative; however, this is not so for acety­

lation in refluxing pyridine» Some nuclear acetylation might 

be expected from such compounds as 2,6-di-t-but-yl-p-cr-esol or 

p-methoxyphenol, but none was found even though reaction time 

was extended from 5 to 20 minutes. Nuclear acetylation of 

p-methoxyphencl might possibly have been expected because m-

dimethoxybenzene was acetylated over 50% in that time. 

Acetylation of reeorcinol and 2,3-naphthalenediol are 

advantageous because nonaqueous titration generally only 

yields a single break for such phenols. The anion of 2,3-

naphthalenediol is red, and any unreacted compound smears the 

sodium hydroxide titration end point so that the N-methyl-

aniline-perchloric acid titrimetric finish must be used. 

Oximes, Sugars, and Mercaptans 

Acetylation of sugars in neutral solvents appears to be 

as rapid as acetylation of alcohols. Lactose is acetylated 

in 5 minutes although it gives slightly high results, which 

are probably due to opening of the glucopyranose ring. 

Ketoximes such as benzoin oxime or cyclohexanone oxime 

are conveniently determined in pyridine at room temperature. 

Acetylation of cyclohexanone oxime and isobutyraldoxime in 

neutral solvents yields high results, presumably from addi­

tion across the oxime double bond. Snyder, Levin, and Wiley 

(34) report such additions to anils on a synthetic basis: 



www.manaraa.com

59 

AcgO + PhN=s=CRg ) PhN—CRg (20) 

Ac OAc 

T-Butyl mercaptan is also acetylated in ethyl acetate 

quantitatively without elimination of HgS. Apparently the 

fact that the sulfur atom in this compound is less basic, 

and therefore, less easily protonated prior to possible HgS 

elimination, than the oxygen atom in t-butyl alcohol explains 

this phenomenon. 

Mixtures 

The pyridine reagent is a mild enough acetylating re­

agent at room temperature so that primary and some unhindered 

secondary alcohols can be acetylated in the presence of ter­

tiary alcohols. Tertiary butyl alcohol and oC,^ -dimethyl-

benzyl alcohol do not react appreciably in mixtures of 50 and 

66 mole % with primary and secondary alcohols, as shown in 

Table 10. Delahy and Sabetay (7) have also determined pri­

mary and secondary alcohols in the presence of tertiary alco­

hols. However, their results show 2% reaction in 2 cases and 

10% reaction in another case. 

As shown in the previous section, diphenylcarbinol and 

presumably other alcohols can be estimated in the presence, of 

triphenylcarbinol or triphenylsilanol. The triphenylcarbinol 

is ionized to the stable triphenylcarbonium ion which cannot 

be acetylated. 
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Cyclobexanol and presumable other faster reacting alco­

hols can also be estimated in the presence of not more than 

30 mole % of the 2-t-butylcyclohexanol used. Since the lat­

ter contains about 2B>% of the reactive trans isomer, this 

isomer presumably reacts enough to cause high results in 

pyridine. Presumably cyclohexanol could be accurately deter­

mined in the presence of pure cis-2-t-butylcyclohexanol. 

Simple phenols such as resorcinol can be estimated in 

the presence of hindered 2 or 2,6-t-butylphenols, by using 

acia-catalyzed acetylation in pyridine. The end points are 

vague because of the presence of these weakly basic phenols 

and the precision is probably + 1;%. 



www.manaraa.com

61 

SUMMARY 

1. AcId-catalyzed acetylation was investigated and a per­

chloric acid-catalyzed method developed which is simpler 

and far more rapid than existing procedures. 

2. Acetylation in neutral solvents such as ethyl acetate is 

quantitative in 5 minutes at room temperature for primary 

and secondary alcohols, phenols, and simple amines. 

Weakly basic amines require longer reaction times. Ter­

tiary alcohols partially dehydrate. 

5. Acetylation in basic solvents such as pyridine is quanti­

tative in 5 minutes at room temperature for primary alco­

hols, 10 to 60 minutes for secondary alcohols, 10 minutes 

for hydroperoxides, 15 to 25 minutes for phenols, and 15 

minutes for ketcximes. 

4. Acetylation in pyridine can be used to assay primary or 

secondary alcohols in tertiary alcohols and simple phenols 

in o-t-butylphenol or 2,6-di-t-butyl-substituted phenols. 

Acetylation in ethyl acetate can be used to assay diphen-

ylcarbinol in triphenylcarbinol. 

5. Chief interferences in both solvents are aldehydes. Ke­

tones interfere in ethyl acetate, but the interference of 

simple slightly enolic ketones can be eliminated at 0°. 

Aromatic compounds with activated rings also interfere in 

ethyl acetate. 
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6. Mechanisms are suggested for the reactions in both types 

of solvents, and support for these mechanisms is pres­

ented. 

7. Acetylation in neutral solvents is rapid, has wide scope, 

but is a very drastic procedure where large amounts of 

interferences are present. Acetylation in basic solvents 

is slower but is a relatively mild procedure which per­

mits differentiating determinations and avoids many 

interferences. 
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